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Abstract

The vibration characteristics of a submerged axially moving band are investigated. Where earlier studies used the

ideal fluid assumption for modelling the effect of the surrounding air, the viscous flow of the air particles is included

here by using an analytical model of a boundary layer on moving continuous flat surfaces. In order to use this theory to

calculate boundary layer thicknesses, the shape of the boundary layer was assumed, so that the additional mass terms

coming from the boundary layer flow could then be evaluated. Since the coefficients of the equation of motion for the

submerged axially moving band changes as a function of the longitudinal coordinate, due to the change in the boundary

layer, the equation is solved by the finite element method. The results show the difference between the present results

and earlier ones to be significant, close to the critical velocity.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

There is a large class of industrial processes which involve the transport of bands and webs across spans.

From the point of view of mechanics, the translating structural members must have special characteristics with regard

to vibration and dynamic stability. The topic of axially moving material has been studied widely, and recent

developments in research are reviewed by Chen (2005), Paı̈doussis and Li (1993), Wickert and Mote (1988) and

Paı̈doussis (2004).

In paper making, for instance, the process often includes high-speed operations in which a thin, light web interacts

strongly with the surrounding air flow, causing out-of-plane vibrations, or flutter. Theoretical and experimental results

show that the effect of the surrounding air on the dynamic behaviour of a paper web is significant. According to the

experimental results of Pramila (1986) the critical velocities and natural frequencies are only 15–30% of the values given

by predictions that neglect the interaction between the paper sheet and the surrounding air.
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Fig. 1. Boundary layer behaviour on a moving continuous flat surface: (a) Sakiadis (1961b); (b) Arzate and Tanguy (2004).
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The first analyses of the flutter of a moving web were performed by Pramila (1987) using analytical ‘‘travelling thread

line’’ models that neglected the cross-direction variation in web motion by assuming that the entire web width deflects

uniformly. The motion of the surrounding air was taken into account in the form of an ideal fluid by means of two

models for added mass. In the first the added mass was incorporated in all three inertia terms of the axially moving

string, assuming that the surrounding air field moves with the web, while in the second the added mass was included

only in the inertia of transverse motion, assuming that the air particles move only in a plane perpendicular to the

translation direction of the web.

The ‘‘threadline model’’ with surrounding potential flow was used again by Chang et al. (1991) to study the out-of-

plane flutter of a moving web. They showed that each of the dynamic terms in the governing equation—namely the

transverse inertia force, the Coriolis force and the centrifugal force—is affected differently by the air, depending on the

air flow, and suggested that the inertia terms in the Coriolis and centrifugal forces are correspondingly dependent on the

displacement thickness and momentum thickness of the boundary layer of the air flow dragged along with the web.

Chang et al. (1991), however, noted that the boundary-layer thickness needed here cannot be predicted by flat-plate

formulae, because the moving web does not have a leading edge.

The boundary layer flow on a moving web can be explained by analogy with the boundary layer on

moving continuous flat surfaces as shown by Sakiadis (1961a,b) and Arzate and Tanguy (2004). Sakiadis (1961a,b)

presents equations for the thicknesses of both a laminar and a turbulent boundary layer on a moving conti-

nuous flat surface. He considered the model of a long continuous sheet which issues from a slot and is taken up by a

wind-up roll (Fig. 1(a)). Indeed, his results regarding boundary layer behaviour on moving continuous flat surfaces

(Sakiadis, 1961b) do indeed show this to be significantly different from that observed with a moving flat plate of finite

length.

Arzate and Tanguy (2004), investigating the air boundary layer behaviour at the surface of a moving web with

experimental measurements made on the web loop system of a jet coating rig, as shown in a schemantic figure (Fig.

1(b)), and comparing their measurements with the theoretical values predicted by the Blasius (1908), Rayleigh (1911)

and Sakiadis (1961b) solutions, showed the Blasius solution to be more appropriate for this flow configuration, while

the Sakiadis (1961b) solution could be better applied to a two roll nip in which the web moves between the rolls, limiting

the origin of the boundary layer.

The aim of this study was to improve the accuracy of earlier analytical results by considering the interaction between

the moving band and the surrounding air in terms of boundary layer theory. The viscous flow of air particles is included

by using an analytical model for boundary layers on moving continuous flat surfaces. In order to use this theory and

calculate the boundary layer thicknesses, the shape of the boundary layer was assumed on the basis of numerical results,

whereupon the added mass terms coming from the boundary layer flow could be evaluated. Since the boundary layer

changes along the band, there is no analytical solution for the equation of motion, and the problem is solved by the

finite element method (FEM).
2. Theoretical model

The band and the boundary layer of the surrounding fluid are modelled as a layered system, as shown in Fig. 2. The

transverse displacement w is assumed be so small that it does not disturb the flow in the boundary layer, and therefore

all the layers have identical transverse displacements. A direct consequence of this assumption is that the flow velocity u

is also a function of the transverse coordinate y if the flow is viscous and the band is translating with a constant axial

velocity uðx; 0Þ ¼ v.
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Fig. 2. Differential part of the system.
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2.1. Equation of motion

Considering the equilibrium of a differential element and assuming constant tension T, the equation of motion for the

‘‘layered’’ system becomes

Z 1
�1

½brðyÞðw;tt þ 2uðyÞw;xt þ u2ðyÞw;xxÞ � TðyÞw;xx� dy ¼ 0, (1)

where b is the width of the band and r is the density of the system. The density r, the flow velocity u and the tension T

are all piecewise continuous functions of the transverse coordinate y, and can be written

rðyÞ ¼
rs; �

h

2
pxp

h

2
;

rf otherwise;

8<
: uðyÞ ¼

v; �
h

2
pxp

h

2
;

uf ðyÞ otherwise;

8<
:

TðyÞ ¼

P

h
; �

h

2
pxp

h

2
;

0 otherwise;

8<
: (2)

where h is the thickness of the band, rs is the density of the solid material, rf is the density of fluid, v is the constant

axial velocity of the band, uf is the flow velocity of the fluid, and P is the constant tension of the band.

By separating the lower and the upper boundary layers from the solid by dividing the integrals, and by taking note of

Eqs. (2), we obtain the equation of motion (Frondelius and Pramila, 2003)

b

Z h=2

�h=2
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Z �h=2
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rf dyþ

Z 1
h=2

rf dy

 !
w;tt

þ 2b

Z h=2
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v
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Z 1
h=2
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uf ðyÞ

v
dy

 !
vw;xt

þ b

Z h=2

�h=2
rs dyþ

Z �h=2

�1

rf

u2f ðyÞ

v2
dyþ

Z 1
h=2

rf

u2f ðyÞ

v2
dy

 !
v2w;xx �

Z h=2

�h=2
dy

P

h
w;xx ¼ 0. ð3Þ

If we assume that the density of the solid material is constant over the band, the first inertia term of each inertial force,

the mass per unit length of the band, can be written as

m ¼ rsbh. (4)

The other three components of each term are due to the inertia of the fluid and its motion, as explained by Chang et al.

(1991). The added mass per unit length in the first force term is due to the transverse inertia of the fluid

ma ¼ b

Z �h=2

�1

rf dyþ b

Z 1
h=2

rf dy. (5)
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In the second term the inertia is due to the gyroscopic effect of the fluid flow, which depends on the displacement

thicknesses of the boundary layer d�l and d�u, representing the lower and upper sides of the band, respectively,

m
aG ¼

brf

v

Z �h=2

�1

uf ðyÞdyþ
brf

v

Z 1
h=2

uf ðyÞdy ¼ brf ðd
�
l þ d�uÞ; (6)

and in the last term it is due to the centrifugal effect of the fluid flow, which depends on the momentum thicknesses of

the boundary layer yl and yu,

maK ¼
brf

v2

Z �h=2

�1

u2f ðyÞdyþ
brf

v2

Z 1
h=2

u2f ðyÞdy ¼ brf ðyl þ yuÞ. (7)

Using Eqs. (4)–(7), the equation of motion can be rewritten in the form

ðmþmaÞw;tt þ 2ðmþmaGÞvw;xt þ ðmþmaK Þv
2w;xx � Pw;xx ¼ 0, (8)

where the first term is the traditional inertia term, the second is known as the gyroscopic inertia term and the third

represents the centrifugal term. The boundary conditions for fixed ends are

wð0; tÞ ¼ wðl; tÞ ¼ 0, (9)

where l is a free length of the band.

2.2. Added masses and boundary layer theory

Only two of the three inertia terms for the surrounding air depend on the boundary layer flow of the fluid, namely

maG and maK , as the first, the transverse inertia term ma, should be proportional to the transverse movement of the

surrounding air. According to Pramila (1986), it can be written as

ma ¼ brf lb, (10)

where b is constant, depending on the geometry of the band.

The model considered in this work is a two-roll nip, in which the web moves between the rolls with a constant axial

velocity v, as shown in Fig. 3(a). The boundary layer flow grows partly due to the air flow through the nip and partly

due to the sucking in of ambient air. If we neglect the flow disturbances created by the rolls and assume that a certain

time has elapsed after the initiation of motion, such that steady-state conditions prevail, the model is very similar to that

examined by Sakiadis (1961a), who considered a long, continuous sheet which issues from a slot and is taken up by

wind-up roll, as shown in Fig. 1(a).

Sakiadis (1961a, 1961b) showed that, although the governing equations for the boundary layer of a laminar, steady,

incompressible flow are the same for a moving continuous flat surface and a moving finite length surface, the boundary

conditions are different. Therefore, the solutions to these two cases and the boundary layer thicknesses are different.

The displacement thickness, which determines the pumping action of the moving continuous surface, is in this case

according to Sakiadis (1961b),

d� ¼
1

v

Z 1
0

uf dy ¼ 1:62

ffiffiffiffiffi
nx
v

r
, (11)
(a) (b)

Fig. 3. Schematic shape of the boundary layers: (a) increasing; (b) symmetric.
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while the momentum thickness, which determines the drag on the moving continuous surface, is

y ¼
1

v2

Z 1
0

u2f dy ¼ 0:887

ffiffiffiffiffi
nx
v

r
, (12)

where n is the kinematic viscosity of the fluid.

Sakiadis (1961b) determined the boundary layer thicknesses for turbulent flow by using empirical relations for the

velocity profile in the boundary layer. The displacement thickness is (Sakiadis, 1961b)

d� ¼ 1:01x
vx

n

� ��1=5
, (13)

and the momentum thickness is

y ¼
1

v2

Z 1
0

u2f dy ¼

Z 1

0

½1� Ẑ1=7�2ddẐ ¼
1

36
d�. (14)

2.3. Shape of the boundary layer

According to Sakiadis (1961a), the essential physical characteristic of a boundary layer on a continuous surface is

that the origin and termination of the boundary layer around such a surface are identified by the boundaries of the

system. In Sakiadis’ model these boundaries are the slot at the origin and the wind-up roll at the termination point.

The system shown here in Fig. 3(b) is slightly different, because we have a web moving over a span between two roll

nips. The origin of the boundary layer is almost the same, however, if the flow disturbances created by the rolls are

neglected. The other end differs because of an extra roll, and this should somehow be taken into account at the

termination of the boundary layer. For a short span, the shape of the boundary layer shown in Fig. 3(b) is good

approximation of the results of Karasek (2003), who analysed the dynamics of a web moving over a span between two

roll nips with a fluid-structure interaction finite element model; he showed the thickness of the boundary layer to

decrease towards the downstream end, as in Fig. 3(b).
3. FEM model

The discrete equations of motion are derived in the same way as in Niemi and Pramila (1987), Laukkanen (2002),

Lumijärvi (2006), and can be written as

M €wþG _wþ Kw ¼ 0, (15)

using the trial expression

wðxÞ ¼ Nw. (16)

The mass matrix is

M ¼

Z l

0

ðmþmaÞN
TNdx, (17)

the skew symmetric gyroscopic inertia matrix is

G ¼

Z l

0

ðmþm
aGðxÞÞv½N

TN;x �NT
;xN�dx, (18)

and the stiffness matrix is

K ¼

Z l

0

½P� ðmþmaK ðxÞÞv
2�NT

;xN;x dx. (19)

Linear shape functions of an element of length le,

N ¼ 1�
x

le

x

le

� �
, (20)
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are used at the element level. The added masses as a function of the coordinate x are approximated in a similar

manner, i.e.

maGðxÞ ¼ N maG1
maG2

� �T
; maK ðxÞ ¼ N maK1

maK2

� �T
. (21)

The nodal values maGi
and maKi

are calculated from analytical boundary layer theory Eqs. (11) and (12), respectively,

for laminar flow and from (13) and (14), for turbulent flow.

The eigenvalue problem is obtained by substituting a trial function w ¼ Xelt in the equation of motion (15), as is

done by Meirovitch (1980),

ðKþ lGþ l2MÞX ¼ 0, (22)

where l is an eigenvalue and X is the corresponding eigenvector. Thus, the natural angular frequency and the

eigenfrequency are

o ¼
ffiffiffiffiffiffiffiffiffi
Im l
p

; f ¼
o
2p

. (23)
4. Results

Numerical examples are included here to compare the present results with the earlier analytical and experimental

ones, to illustrate the analysis, and to demonstrate the effect of the surrounding fluid flow.

First we compare the results of the current model with the experimental measurements of Pramila (1986) and the

results of the earlier ideal fluid idealization of Pramila (1987) shown in Fig. 4. Pramila (1986) measured the fundamental

frequencies of a narrow paper web using a pilot coater with a web of length 2:4m, width 0:47m, weight per unit length

17 g/m and constant b 0:3275.
The dashed and chain-dotted lines represent the analytical solutions of Pramila (1987). In the first equation (chain-

dotted, line), the added mass due to the transverse inertia is incorporated into all three inertia terms of the axially

moving string, assuming that the surrounding air field moves with the web motion. In the second (dashed line), the

added mass is included only in the inertia of the transverse motion, assuming that the air particles move only in a plane

perpendicular to the direction of translation of the web.

The results of the current model are calculated on the assumption that the boundary layer flow is turbulent and the

shape of the boundary layer conforms to the increasing pattern shown in Fig. 3(a). The number of elements is chosen to

be 60. For the sake of clarity, the results are shown in nondimensional form in terms of frequency, axial velocity and
V

F measured , Pramila (1986)
in vacuum, Pramila (1987)
First Eq., Pramila (1987)
Second Eq., Pramila (1987)
Current model
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Fig. 4. Dimensionless lowest eigenfrequencies F as a function of dimensionless velocity V.
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Fig. 5. Dimensionless critical speed Vcr as a function of dimensionless length L.
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Fig. 6. Dimensionless lowest eigenfrequencies F as a function of dimensionless velocity V for chosen geometry.
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length, are defined as follows:

F ¼ f � 2l

ffiffiffiffi
m

P

r
; V ¼ v

ffiffiffiffi
m

P

r
; L ¼

l

b
. (24)

The same nondimensional presentation is used for all the following analyses.

The ideal fluid analyses presented by Pramila (1987) form the upper and lower approximations for the boundary

layer model, and the current results should be between these two. The effect of the boundary layer flow for the lowest

eigenfrequency grows as the axial velocity increases and the maximum is reached at the critical velocity. The effects at

lower velocities are quite small, because the practical example used has quite a short span, and therefore the boundary

layers do not become very thick at low axial velocities. The effect of viscous flow is more significant with longer spans,

as can be seen in Fig. 5, where the critical velocity is presented as a function of the span length for both turbulent and

laminar flows. It can also be seen in the same figure that the turbulent flow has a significantly larger influence on

dynamic behaviour than does the laminar flow.
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The above results are calculated on the assumption that the boundary layer is of the increasing shape, as used by

Sakiadis (1961a). In Figs. 6 and 7, however, the results are also calculated using the shape proposed in the current work,

as shown in Fig. 3(b) for a moving band of length 18:8m, width 0:47m, mass per unit length 17 g/m and constant b
0:0296. Fig. 6 presents the lowest eigenfrequency as a function of axial velocity, and Fig. 7 the critical velocity as a

function of the nondimensional span length. The results suggest that the influence of the shape depends on the axial

velocity of the web and the length of the span, and that the shape is obviously significant at high axial velocities and

large span lengths.
5. Concluding remarks

The vibration characteristics of a submerged axially moving band were investigated by means of analytical boundary

layer theory in order to include the viscous effect of the surrounding fluid flow. The shape of the boundary layer was

assumed according to the numerical results, and the boundary layer thicknesses were calculated according to the model

presented by Sakiadis (1961b) for the boundary layer on moving continuous flat surfaces. The inertia of the flow was

then included in the equation of motion for an axially moving web in the form of added mass terms. Because of

boundary layer changes along the band, the eigenvalue problem was solved by the finite element method.

The greatest influence exerted by the surrounding flow on the dynamics of the axially moving web comes from the

first term, the transverse inertia ma, which is proportional to the transverse movement of the surrounding air. The drop

in the lowest eigenfrequency can be about 80%, as shown in earlier studies. The viscous boundary layer flow has a

considerably smaller effect, particularly at low axial velocity. Its influence grows as the axial velocity increases, however,

and the drop in the critical speed of the system can be significant due to turbulent flow if the span length of the system is

high. It should also be noted, that the influence of the laminar flow is considerably smaller. The shape of the boundary

layer also has some influence on the natural vibration of the band, particularly at high axial velocities. The proposed

shape for the boundary layer in the system considered here gives changes in the critical velocity that are one third

smaller than that proposed by Sakiadis.
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